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Theory of Hopping and Multiple-Trapping Transport 
in Disordered Systems 

B. Movaghar, 1 M.  Griinewald, 2 B. Pohlmann, 2 D.  W ~ t z ,  2 
and W.  Schirmacher 3 

We present a general theory to describe equilibrium as well as nonequilibrium 
transport properties of systems in which the carriers perform an incoherent 
motion that can be described by means of a set of master equations. This 
includes hopping as well as trapping in the localized energy region of amorphous 
or perturbed crystalline semiconductors. Employing the mathematical analogy 
between the master equations and the tight binding problem we develop 
approximation schemes using methods of many-particle physics to derive expres- 
sions for the averaged propagator of the carriers and the conductivity tensor. 
The calculated conductivity and Hall conductivity Of hopping systems compare 
extremely well to computer simulations over the whole range of frequency, 
density, and temperature. We are able to derive expressions for dispersive 
transport in hopping as well as trapping systems that contain the results of 
earlier theories of Scher, Montroll and Noolandi, Schmidlin as special cases and 
establish criteria for the occurrence of dispersive transport in such systems. We 
find that in principle hopping can lead to dispersive transport if the times and 
densities are very low, but actual experimental data are more easily explained in 
terms of multiple trapping. 

KEY WORDS: Hopping transport; trapping; master equation; hopping 
Hall effect; dispersive transport. 

1. I N T R O D U C T I O N  

In  the  last  d e c a d e  the  p r o b l e m  of i n c o h e r e n t  t r a n s p o r t  of  par t ic les  b e t w e e n  

spa t ia l ly  a n d  ene rge t i ca l ly  d i s o r d e r e d  loca l i zed  s tates  w h i c h  c a n  be  de-  

sc r ibed  b y  a set of  M a r k o v i a n  m a s t e r  e q u a t i o n s  ( M E )  has  e v o l v e d  in to  a 

sub jec t  of  c o n s i d e r a b l e  in te res t  w i th  a w ide  r a n g e  of  app l i ca t i ons /1 -3 )  Th is  

Presented at the Symposium on Random Walks, Gaithersburg, MD, June 1982. 
1 GEC Research Laboratories, Hirst Research Centre, Wembley, England. 
z Philipps-Universit/tt Marburg, Fachbereich Physik, Renthof 5, D-3550 Marburg, Federal 

Republic of Germany. 
3 Technisehe Universit/it Mfinchen, Physik-Department El3, D-8046 Garching, Federal Re- 

public of Germany. 

315 
0022-4715/83/0200-0315503.00/0 �9 1983 Plenum Publishing Corporation 



316 Movaghar el al. 

includes hopping and trapping of electrons in the localized region of 
amorphous or perturbed crystalling semiconductors. 

The existing approaches for solving linearized versions of the ME may 
be roughly divided into three groups: (a) the equivalent random network 
method, combined with percolation techniques, (4) the continuous-time ran- 
dom walk method, (5) and the Green's function method, (6'7) which is the 
basis of the present treatment. Since the averaged Green's function that 
solves the ME can be interpreted as the probability to find a particle in a 
state when it started in another, the Green's function method allows for a 
random walk interpretation. (8) So our Green's function approach is effec- 
tively a microscopically based random walk theory. 

The present authors have shown in a series of papers (9-1l~ that, if one 
employs the mathematical analogy between the ME and the tight-binding 
problem and uses methods of many-particle physics, one can derive ap- 
proximation schemes that have proved to be very successful in describing 
equilibrium (11,12) and nonequilibrium (13,14) hopping and trapping transport 
across the whole density, temperature, and frequency range. This holds 
both for comparison with computer simulations as well as with experimen- 
tal data. 

The present formalism also has the advantage that its results include 
those of the other existing approaches as special cases. This makes it 
possible to discuss the merits and shortcomings of the latter and to discuss 
different proposed transport mechanisms on a common footing. In particu- 
lar we are able to treat hopping, trapping, and combinations of both in the 
same framework and discuss the conditions under which these mechanisms 
lead to experimentally observable anomalies like an coS-law in the ac 
conductivity or non-Gaussian transients in time-of-flight experiments. 

The present contribution, which comprises a survey of this theory and 
some new results is organized as follows: In Section 2 we briefly show how 
the linearized master equations are solved approximately for the averaged 
propagator. Results for the conductivity tensor in the presence of weak 
applied magnetic fields are presented in Section 3. In Section 4 we demon- 
strate how dispersive transport due to hopping and trapping may be 
described in terms of microscopic parameters. 

2. GENERAL FORMALISM 

2.1. The Linearized Master Equation 

We start with the linearized ME which quite generally can be put into 
the form (15) 

d--td ni = - ~, Kijni+ ~, Kjin j -  6ini (2.1) 
J J 
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Here i denotes the position r i and the local chemical potential E~ of the 
state i, and n~ is the (linearized) occupation probability. The effective 
transition rates K~j are related to the transition rates W,j that appear in the 
nonlinear ME by K/j = r/j/F,~ 16) 'Tff = f ( E i ) [ 1  - -  f ( g ) ]  Wtj and  F i = f ( E i ) [ l -  

f(Ei)], where f(E) is the Fermi function. (For symmetric transition rates the 
ME itself is linear, and we have K,j = W,y = Wj~.) The 6~n~ are additional 
loss terms to be specified below. 

We have assumed that a localized level can be either empty or singly 
occupied. To put a second electron into a singly occupied state costs an 
extra Coulomb energy U (Hubbard energy). In this paper we shall only 
consider the U ~  oo limit. The more realistic finite U transport problem has 
been recently solved. (~7) 

The formal solution of (2.1) is given by the resolvent matrix (Green's 
function) 

= R ] , ;  I (2.2) 

where the matrix /s has diagonal elements -6~ - ~jKy and off-diagonal 
elements K/j. 

Note that Gy(~o) can be interpreted as the Laplace transform of the 
probability Go.(t ) of finding the particle at site j at time t when it was 
started at time t = 0 at site i. This naturally leads to an analogy to the 
random walk description of hopping transport of Scher and Lax. (5) On the 
other hand it is observed that Go(~o ) is mathematically equivalent to the 
Green's function of a tight binding Hamiltonian. 

The quantity of interest is the configurationally averaged Green's 
function (G~j)y with the sites i and j held fixed (not averaged over). 
Because of this, the analogy with the tight binding problem is a very useful 
one, and in particular we can take over all the renormalization techniques 
and approximation schemes which have been developed to calculate the 
electronic properties of liquid metals and alloys, e.g., the CPA and cluster 
CPA for diagonal and off-diagonal disorder. (18) The usefulness of these 
schemes when applied to the master equation depends on the problem 
under consideration. The CPA is very powerful when dealing with purely 
diagonal disorder (except in one dimension(15'19) ). In other words, one 
considers the 8s term in Eq. (2.1) as a diagonal disturbance of the diffusion 
process.(15,20) This includes for example trapping (and release, see Refs. 13, 
14 and Chap. 4), recombination or relaxation of charge carriers and 
excitations at particular centers. (3,15) For off-diagonal disorder the situation 
is less clear. (2~-24) Here it seems to us that there is only a limited number of 
physical situations for which the CPA is of value: diffusion in weakly 
disordered systems with nearest-neighbor jump rates. In the more general 
problem of interest which involves transport in low-density systems, non- 
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nearest-neighbor transfer becomes important and it is better to use a direct 
approach. 

2.2. Green's Function Expansions and the Effective Medium 
Approximation 

The linearized master equation can be formally solved using standard 
Green's function techniques. The two major difficulties one then encoun- 
ters are (a) to find reasonable approximations to the path summation 
problem and (b) the problem of carrying out the configurational averages 
for the quantities of interest. 

First let us consider point (a). The probability or Green's function G 0 
can be directly expanded using perturbation theory either as 

A 

- _ _  + = - -  + -r-- - : -  + - . .  ( 2 . 3 )  
l~O lr l~O I03 l (D l~.) 

or alternatively as 

89 1 1 + �9 �9 �9 (2.4) 

Gochanour et al. ~7) derived a diagrammatic theory for the case of purely 
positional disorder using the form (2.3). The Scher-Lax approximation, (5) 
on the other hand, is easily derived using the form (2.4). ~ 6) We have found 
it more useful and more transparent to work with the renormalized expan- 
sion (RPE) given by (li) 

Gij = Giiay + GiiKyGj~ 0 + E GiiKilG~~ )+  " ' "  (2.5) 
l ~ i ~ j  

where [7~(n'i'" "~h~ . . . .  ), for example, represents the exact local Green's function 
with transfer forbidden to the sites (n, i . . . . .  s). We also have for example 

[ 1 �9 _,~k~(") = i w  + K k ,  - A(~") ( 2 . 6 )  

where the self-energies A(~ n) are given by 

h~kn) ~] I," ~,k)r , -  -- r," ~ ,k ) rd  ~ , k , I ) ~  -- " ~ l ' u  axis- ~ " ' "  (2.7) ~Xkl'~ ll axis ~ss  aXsk - -  
l=/-n 14-s~n 

Since all repeated indices have been eliminated by partial summations, 
the RPE represents an exact self-avoiding walk expansion. We note that 
diagonal and off-diagonal terms are correlated in (2.4) and it is convenient 
to rewrite (2.5) in the form 

Gij = Giirij q" Gi ig i jGj j ( i j )  q" E Giigi lGl/( i l )g( l j i )Gjj(  il; l j )  + �9 �9 �9 (2.8) 
l ~ i v ~ j  
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where 

Kil - i 

giz= -~iti [ Gzt(il) + Kti- '] 

4 o  = K,j x j , 1 ] -  L 

(2.9a) 

(2.9b) 

gil gi, = ~ E Gl,(il) + K / r ' ] - '  

= Fi- '  [ FIG.(i l  ) + ,Till] -1 

G u (i l)  = iw + (2.13) 

It is interesting to note that this approximation is exact on a Cayley tree. 
An improved theory is obtained by noting that in the first place the effect 
of loops is to reduce the total number of self-avoiding paths from i to j and 
thus leads to an effective reduction of the site density. Formally this can be 
derived by noting the exact relation (w = 0): 

~] K,. - Ai(~o = O) = 2 gi}~( ~~ = O) (2.14) 
/L l 

(2.12) 

and 

where 

and so on. 
The quantity Gjj(il; lj), for example, now refers to the exact local 

Green's function of site j with transfer excluded to the sites i and l, and, 
additionally, with the bonds ( i -  I) and ( l -  j )  entirely removed from the 
system. 

Equation (2.8) is still exact; the advantage of this form is that approxi- 
mations can now be formulated in terms of memories of previous sites 
visited. 

The simplest approximation is to keep the exact memory of the 
previous "site" (however many times the particle may have jumped back- 
wards and forwards) and forget the other sites visited. This is equivalent to 
replacing 

G.n( il; lk . . . . .  sn) - - )  ann(St't ) (2.10) 

everywhere in (2.8) and (2.9). We now obtain 

aij = G,,6 0 + a,,gijajj(ij) + ~] Gi,gi, Gzz(il)gljGjj(lj) + . . .  (2.11) 
l~=iu=j 
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where 

i~l~s gli + (7l;- 1 (il) 
�9 .. ~ # n  

] X [  Ks, Gss l ( i l ; l s )  ] " " " I Kmlx " " " gPm (2.15) 

The effect of closed loops in the self-energy has been to remove all repeated 
indices in the iteration of (2.12). Within the approximation scheme this 
leads to a scaling down of the site density n from n to apn where 
ap = exp(-  1). 

For configurational averaging we now apply the effective medium 
approximation (EMA) to equation (2.12). This together with the above 
considerations leads to the following nonlinear integral equation for the 
quantity m(  Ei, r ) = (~ ,  lFigil) i 

p(E') 'r(E,E' ,R) t" / m(E,o~) = nap jdR j  dE' l + "r(E,E',R)/[i~oF(E') + rn(E',r ~ (2.16) 

where p(E) is the normalized energy distribution function and we have 
assumed that the sites are randomly distributed. 

One can also develop a self-consistent three-site approximation along 
the same lines. The details are given in Refs. 11 and 12. The idea is to keep 
the memory of the two previous sites visited by the particle and re- 
randomize over the rest. The proper treatment of three-site loops, which is 
thus guaranteed, is essential for the Hall conductivity in low-density sys- 
tems (see Chapter 3). The longitudinal conductivity, however, is well 
approximated by the two-site theory. 

In the case of symmetric rates we need not keep the energy depen- 
dence in m(o~) and obtain a simpler EMA equation for rn(o~)= ( ( l / N )  
~/jg~), where N = nV is the number of sites (V is the volume): 

p(AE)W(AE,  R) 
m(c~ = n a e j d R j d A E  [" + W(AE, R) / [  ir + m@)] (2.17) 

where O(2xE) is the distribution of energy differences AE = ]E i - Ej]. For 
this case we can give a closed expression for the averaged propagator. 
Defining 

( 1 r/j}/ and G(k, r  1 ) m(k,r = -~ ~ g/jexp(ik. ~ ~,Gijexp{ik.rij} 
q 0" 
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we have from (2.11) and the EMA: 

G(k,~) = [ioa - m(k,~o) + m(o, co)]- '  (2.18) 

This obviously is the solution of a generalized master equation for G(r, t) 
with the rates Kq replaced by memory kernels m(r - r', t - t'). (13,43) 

Expanding m(k, oa) to lowest order in k leads to G(k,~0)= [i~o + D(~) 
k 2] - ! where 

1 0 m(k,w) = d3R 
D(oa) = - -~ - ~  k=o 1 + W ( A E ,  R) / [ i r  + m(r 

(2.19) 

is the frequency-dependent diffusion coefficient connected with the conduc- 
tivity by the Einstein relation 

Gxx (oa) = (nnce2 / kB T )D (oa) (2.20) 

Here e is the electronic charge and n c is the number of carriers per site. In 
the case of asymmetric, energy-dependent rates the current-current correla- 
tion function must be evaluated directly for the conductivity tensor. The 
corresponding expressions will be given below. 

2.3. Comparison with Other Theories 

We can recover the two-body self-consistent diagrammatic theory of 
Gochanour et al. (7) (GAF) by rewriting the renormalized expansion (7) in 
the form 

8v 
g2 
vii iw + ~ t, giu 

where 

+ i~o + s g, ij ioa + 21~ig, j, + "" " (2.21) 

gJ=[ go-' + ( i,o + 2 . . j g , . ) -  ' ] -1 (2.22) 

If we now replace the ~, ,~ ,g , ,  everywhere in (2.21) and (2.22) with ~ ,~=,~,~ 
and carry out the EMA we recover precisely the two-body approximation 
of GAF. In fact it is equivalent to replacing the bare propagator g9 with the 
effective pair propagator ~/j determined self-consistently within an effective 
medium. Another way of interpreting this result is to note that in compari- 
son to (2.15) the GAF theory is approximating the loop processes in a 
different manner from our theory. Indeed the results of the GAF theory are 
equivalent to ours if the inverse "percolation" number ap is replaced by 1/2 
and the hop rates are effectively changed by a factor of 2. Yet another 
approximation which we shall call the symmetrized EMA is obtained by 
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replacing g,, with ~,p in Eq. (2.21) only. This is then equivalent to the result 
of the conductance network approximation derived recently by Sum- 
merfield and Butcher (25) (SB). In the case of R-hopping, the SB results can 
hardly be distinguished from ours. These authors take a e- 1 from the start to 
be a percolation number. Within this approximation, however, some new 
features arise: (a) the pair result is recovered exactly in the limit n ~ 0; (b) 
average currents and the average diffusion coefficient are related in the 
small field limit by the Einstein relation as they should. 

Nevertheless all of these theories fail in describing the right high field 
limit. We therefore conclude--besides the considerable success of the 
present theory in the Ohmic regime--that a unified treatment of the 
complete electric field regime within the Green's function formalism is still 
missing. 

3. THE CONDUCTIVITY AND HALL MOBILITY IN POSITIONALLY 
AND ENERGETICALLY DISORDERED SYSTEMS 

3.1. The Conductivity Tensor 

The general expressions for the frequency-dependent longitudinal and 
transverse (Hall-) conductivity are given by ( 12,161 

e2(iw)2 x2FiGij(w)) (3.1 t 
~176 k~TV (~ij 

e2(i~0) 2 
.. xjyeF,.hGiff (e) ) (3.2) axy(~)-  kBTV ( ~  

where xi(Yi) are the components of r / and  x/j = x i - xj. Gift = G~j + AGiff is 
the solution of a generalization of (2.1) for hopping in the presence of a 
weak magnetic field of strength H, and AGo. ~ is the linear term in the field. 
The transition rates have been decomposed in the same fashion: W,y 
= W/j + h W, H where W,y are the field-free rates, so that we have 

.r H = r O. + ~.Ari  H (3.3) 
P 

with 

A r i H = f ( E z ) [ 1 - f ( E ? ) ] [ 1 -  f (E j )  ]2x W~;j(H) 

+ I1 - f (E~)]f (E?)I(E:)AW~)j(H) (3.4) 
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The first-order modification of ~-~m is induced by the magnetic field due to 
an interference process over a third site p. wiepj(H) is the transition 
probability for an electron from site i t o j  if the intermediate sitep is empty 
and Wj(eh)(H ) represents the interference process for a hole from s i te j  to i 
(an electron from site i to j )  if the intermediate site p is occupied. (26) As 
noted before a three-site EMA which treats the i - p - j  interference 
processes exactly is necessary for evaluating Oxy. 

The final results for the conductivities are 

k,V 6 1 7 ~ ; ~ 0 )  (3.5) 

_ e 2 n3faRifai jfaEifaE fa  ~ k~T 2 

• (R i x Rj)zo(E i )o(Ep )o(Ej )A~-;~ (3.6) 

[ 1 +  24  .-b~-jp][ 1 +  Tpj+Tpi] TjpTpj 

where r~(E,w)= [m(E ,w)+  iwF(E)], and m(E, co) is given by (2.16). The 
Hall mobility is then given by 

/z. (co) = o~y(co)/Re( Oxx (c0))H (3.7) 

It is obvious that whenever the factor r~-i = Ira(E, co) + F(E)ico]-i which 
appears in the denominators of Eqs. (2.16), (3.5), and (3.6) becomes very 
small, i.e., at high densities, temperatures, and frequencies, the expressions 
in curly brackets may be put -- 1. This approximation, which corresponds 
to the quasicrystalline approximation (QCA) in the tight-binding problem, 
could be called "diffusion equation approximation" since in this limit D(co) 
does not depend on frequency. A similar argument applies to Eqs. (2.17) 
and (2.19). 

3.2. Analytical and Numerical Results 

An advantage of our EMA scheme is that in special cases one can 
obtain analytic results in a simple manner. In the case of symmetric 
rates Eqs. (2.17) and (2.19) are evaluated easily for the ac and dc conduc- 
tivity. For asymmetric energy-dependent rates one has to solve the in- 
tegral equation (2.16) numerically. However, as shown in Ref. 11 in the 
case of phonon-assisted hopping with a constant density of states it is 
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a good approximation to use symmetric "barrier" jump rates W,)= 
u o e x p { - 2 a l R y ] -  AE/ksT  } with a constant p(AE)= P0. From (2.17) we 
immediately obtain for m (~0 = 0) 

l =(4T/To) fo~dXx3II + 

which for T<< T O gives us 

with 

1 

m(0) exp(x) (3.8) 
9 o 

m ( 0 ) =  poexp[ - (To /  T) '/4 ] 

24a3 To M~ 

T 0 -  ae~rnPok 8 - ae 

Mott's optimization procedure ~28) is therefore equivalent to neglecting 
closed loops. In the low-temperature regime the ac conductivity can be well 
approximated by r 13) 

1/2 ( = ( nn~e2 1 + io~ 
Oxx(~O) 

\ 

with ,~=6(T/To) 1/4. [At high frequencies oxx(c0) saturates at the 
QCA value.] For pure spacial hopping ("R-hopping") with Wij = 
uoexp(-  2a[R~l ) we obtain in the low-density and -frequency limit (na-3 
<< 1, o~ << Po) 

m(0) = p0exp{ - qan-1/3} (3.10) 

Eiol Oxx(r = (nnce2/kBT4Oap)nl/3q2m(O) 1 + m~(0) (3.11) 

where q = (6/ae~r)l/3 = 1.73 and fl = 5nl/3/qa. % is easily evaluated from 
a formula which follows from (3.6) by letting F(E)~  nc, ,cij ~ n~ Wij, etc., 
p(E) = 6(E) and m(E, o~)~ ncm(~o ) (see Ref. 12). 

The low-density result for the dc Hall mobility is 

/L H cc nl/3exp( - �89 (3.12) 

Note that Eqs. (3.10) and (3.12) are essentially the "percolation re- 
suits.,,(27,29,30) 

The analytic results for axx (0) and/~q as well as for oxx (~) are in good 
agreement with the full numerical evaluation of Eqs. (2.19) and (2.17) for 
densities an-l/3>~ 8. As an example we show results of a numerical 
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Fig. 1. dc-Hall mobility/~H plotted against an- I/3 for Rihopping. The solid line represents 
our theory. Full points are numerical simulations due to Mclnnes and Butcher (Ref. 32), 
dotted line is their theory. Open circles are experimental results by Biskupski on InP (Ref. 31). 
The curves marked FP and BB refer to the work of Refs. 30 and 27, QCA is the "quasi- 
crystalline" or diffusion equation approximation. 

calculation of the Hall mobility vs. a n  - t / 3  in Fig. 1 and compare it with 
both experimental and simulation data. Open circles are experimental 
results of Biskupski (31) on InP samples for different doping ratios, the full 
points are the numerical values of Mclnnes and Butcher. (32) The random 
walk theory is in excellent agreement over the whole density range, compar- 
ing well to the experimental and simulation data. 

We now apply our theory to phonon-assisted hopping at the Fermi 
level which is governed by the A H L  jump rates (4) 

T 0- = v o e x p [ - 2 ~ I R ~ I -  (IEi- Ejl-t-IEel + 1 I)/2kBT] (3.13) 

As the rates are asymmetric, we need the full energy-dependent solution of 
Eqs. (2.16) and (3.5). Figure 2 shows some new results for a box-shaped 
density of states in comparison with computer  simulations for the same set 
of parameters. Again we find excellent agreement between theory and 
computer experiment. The deviations at high densities are explained by 
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Fig. 2. The dc-conductivity Oxx(0 ) for the full energy-dependent model, corresponding to Eq. 
(3.5) is plotted against ( a 3 / N F k T )  1/2 (where N F = npo). Points are the numerical simulations 
due to Summerfield and Butcher (Ref. 25) for an 1/3 = 3.4 and band width B = 10 meV for 
the energy distribution P0. The solid line is the present theory with infinite band width. 
Making the band width finite leads to the dotted line at high T. The curve marked QCA is the 
"quasicrystalline" or diffusion equation approximation. 

Summerfield and Butcher (2s) as systematic errors of the computational 
procedure used by Mclnnes. 

For the same model the temperature-dependent Hall mobility was 
evaluated too. As there are until now neither simulation nor experimental 
results available, comparison is made with other theories (Fig. 3). The 
percolation theoretic results of Friedman and Pollak (33) and Gr~newald et 
al.(34,35) show for 10w densities and low temperatures the same behavior, 
nearly a T - 1 / 4  law as the random walk result, but are lower in their 
absolute magnitude. At high densities and high temperatures the present 
theory reaches the diffusion equation limit, whereas percolation theory 
breaks down. Note that the absolute value of the Hall mobility, marked by 
an arrow in Fig. 3 for a set of characteristic parameters, is very small and 
perhaps beyond the experimental range. 

There are more theoretical and experimental results which are well 
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Fig. 3. The normalized Hall mobility log(/~///~0) plotted against (o~3/NFkT) 1/4. The full 
curve is the result of the present theory. The dashed line is the high-density and high- 
temperature QCA result. The lower broken curves have been calculated using percolation 
theory in Refs. 34, 35, and 33, respectively. The arrow indicates the magnitude of/44//~0 for 
T = 300 K,  N F = 10Ig/cm 3 eV and a -  l = 10A (Ref. 34). 

described by the present theory: e.g., the ac Hall effect measurements of 
Amitay and Pollak. (36'37) 

4, DISPERSIVE TRANSPORT: HOPPING VS. MULTIPLE TRAPPING 

We have considered the equilibrium transport properties of phase 
incoherent motion in disordered systems. Let us now turn to nonequilib- 
rium dynamic transport properties. Dispersive transport, i.e., non-Gaussian 
transient current traces of the form 

t - ( I - B ) ,  t < t r 
i ( t )  oc (4.1) 

t - ( I + B ) ,  t > t T 

(where t r is the transient time of the fastest carriers and 0 < fl < 1) are a 
common feature of time-of-flight measurements in disordered organic and 
inorganic semiconductors. (3s) 
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In their pioneering work (5'39) Montroll, Scher, and Lax explained these 
features in terms of incoherent hopping motion in the framework of a 
continuous-time random walk formalism. Later, some alternative models 
involving multiple trapping have been proposed. (4~ There has been some 
controversy as to the mechanism which actually leads to a behavior of the 
form (4.1). Schirmacher (13) has shown that in principle both hopping and 
trapping can account for the effect. In practice it is, however, much easier 
to explain experimental data by including the multiple-trapping mechanism 
than by pure hopping as shown by Godzik and Schirmacher. (14) This will 
also be demonstrated below. 

Considering a planar sheet of carriers created by a light flash on the 
surface (x = 0) of an infinitely extended sample of thickness L at t = 0, the 
transient current in the presence of an applied electric field of strength E 
can be written as (39'44) 

d d s @ . ( x , o  (4.2  i ( O  = 3 7  x - L = a 

where n ( x ,  t)  is the x-dependent carrier density ("pulse shape") given by 

n(x,,) = .of ey f a(r (4.3) 

and G(r, t) is the averaged propagator (Green's function) in the continuum 
representation. If boundary effects are neglected G(r, t) is just the inverse 
Fourier and Laplace transform of G(k,o~) introduced in Section 2. To 
include multiple trapping effects we now follow Schmidlin (42) in distin- 
guishing between states of approximately equal energy among which hop- 
ping is allowed (transport states, occupation probability hi) and states of 
much lower energy (traps, occupation probability p~) which are only accessi- 
ble via the transport states. In the absence of infinitely deep traps (8 i = 0) 
Eqs. (2.1) take the form 

d a n ,  = - EKvni + E g ,  n j -  w,n, + r, E n  j 
J J J (4.4) 

d 
a pi = - riPi + wini 

w i and r i are the trapping and releast rates, respectively. By Laplace 
transforming and assuming _p~( t - -0 )  = 0 we obtain an effective (non- 
Markovian) rate equation for the transport states: 

J J J 

where 8i(oa ) is given by 8/(oa) = ioawJ(ioa + ri). 
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For simplicity we assume the transport rates in the absence of the field 
to be symmetric K~i(E = 0) = W 0 = W/e so that we have to first order in the 
field E: Ko.(E ) = (1 - ~x~i)l, Vsj, where ~ -- e E / 2 k B T  > O. 

As a consequence of particle conservation the propagator G can 
always be written as a solution of a generalized master equation (43~ 

G(k,~0) --[ko - m(k,w) + m(0, ~0)] -1 (4.6) 

where the generalized transfer rates m(k,w) (memory kernels) depend on 
the approximation scheme employed to solve the microscopic master equa- 
tions (2.1). In the absence of trapping (r e = w i = 0) we obtain from (2.18) 
and the symmetrized version of the EMA the following self-consistent 
equation: 

m(k,w)= -~ ~exp{ikNy}{(1--r lxy)[  H/ifl + ( i~o+m(w))-l]  - } 
Ij 

(4.7) 

with m(w) = apm (k = 0, ~0). In the presence of multiple trapping, using the 
CPA to deal with the diagonal perturbation 8i(w), m(k ,w)  has to be 
replaced by 

where the self-energy ~(w) is determined from the CPA condition 

( ~(~)-Si(w) )=0 (4.9) 
and Go(iw ) = [iw + m(O,w)] -1. Since 8 i is small for small w one can use the 
simple equation ~ = (Be) as a good approximation. 

A small k expansion of m (k, w) yields to lowest order in E 

G(k, w) = [ i w  - D(w)(2~ik~ - k 2) ]-1 (4.10) 

In the pure hopping case (w i = r,. = O) D(w) is the diffusion coefficient in 
the absence of the field as given by Eqs. (2.19) and (2.17). In the case of 
additional multiple trapping we obtain from (4.8) 

where D (~0) is the diffusion coefficient without traps. 
In the form (4.1) G(k,o~) is the solution of a generalized Einstein- 

Smoluchowski equation studied by Leal Ferreira (44) and Butcher and 
Clark.(45) They have shown that the transient current has the form (4.1) if 
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D (~0) is given by 

D(~) cc (i~) 1-8 (4.12) 

and the term D(~)k 2 in (4.1) is ignored. In fact it is quite easy to 
demonstrate (45) that in this case the ratio of the spread and the mean of the 
pulse does not depend on time, which is one of the striking features of 
dispersive transport. (2~ As shown in Ref. 13 the D(~)k 2 term can be 
ignored if the experimental time scale is larger than t R = 1/~0 R , where o~ R is 
defined by 

~0g/Re [ D(~oR)1~/2 = 1 (4.13) 

In all cases of practical interest this condition is fulfilled. (14,46) Evaluating 
the EMA and CPA, respectively, for D(o~), according to Eqs. (4.3) and 
(4.4), one quite generally obtains the following features: Up to the value 
m o = mo(t~ = O) = l i t  o D(o~) will be constant. For ~ > ~0 Re[D(~)] will rise 
monotonically and finally saturate if o~ > o~  ( ~  is of the order of the 
microscopic time scale.) 

This holds both for hopping in the absence of traps as well as for 
multiple trapping with constant hop rates. (The latter mechanism has been 
shown ( 13~ to be identical to the model considered by Noolandi (4~ and 
Schmidlin. (41~) In the more complicated case of trap-controlled hopping, 
where both W~j and the trap rates r, fluctuate, multiple trapping leads to an 
increase of the dispersive range of D(t~) if the hopping and trapping time 
scales are not well separated. If they are well separated the frequency 
dependence of Re[D(~)] will have a steplike structure. If now in the regime 
o~ 0 < o~ < ~0~ D(o~) varies as i~ ( 1 --fl) it follows that dispersive transport in 
the sense of Scher and Montroll (39) will be observable if the experimental 
time scale lies in the range t g < t < t o. Neglecting boundary effects the 
transit current within this time window is given by (44'45~ 

i ( t ) = S - l n ~  itoL ] [ 1 -  2D(~)~/ )]  (4.14) 

where _z a -1 denotes an inverse Laplace transform. If D (~o) is parametrized 
as D ( w )  = ~R2mo(~o/mo)  (1-B~ this will lead to a behavior of the form (4.1) 
with the transit time 

t r = t o ( 3 L / ~ R  2) 1/fl (4.15) 

In terms of t r the time t g is simply given by t g = t r ( 2 / ~ l L )  1/~. For t > t R 
and fl = 1/2 (4.14) can be inverted analyticaUy: (44) 

i (  t) = no( t r /~r t ) l / 2 [1  - e x p ( -  t r / 4 t )  l (4.16) 
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Fig. 4. log-log plot of the current i(t) vs. time for D(~)c~ (i~)l/2. The full curve is the 
analytic formula (4.16) (Ref. 44). The other curves are the evaluation of i(t) using correct 
boundary conditions and the full propagator for ~/L = 20 ( . . . . . . .  ), 200 ( . . . . .  ), and 2000 
( . . . .  ). These curves coincide completely with the full curve for t / t  T > (~/L) -2. 

To test the quality of the approximations that led to (4.15) i(t) has been 
evaluated (46) imposing a reflecting bounda ry  at x = 0 and an absorbing 
bounda ry  at x = L and using the full G(k, 00 including the D(w)k 2 term. In  
Fig. 4 the results for i(t) with different values of ~/L are compared  with the 
analytic expression (4.16). Since the curves merge completely beyond  the 
corresponding values of t R we conclude that bounda ry  and  free diffusion 
effects may  be neglected in the time regime t > t R . In  cases of experimental 
interest T/L >> l so that t R is very small compared  with the experimental 
time scale. 

The crucial condit ion for the occurrence of dispersive transport  now 
becomes 

tr << t o (4.17) 

or, in terms of the parameters  ~/, L, and R: R2>> L / ~ .  
With the help of our  E M A  and  C P A  equations it is straightforward to 

perform reliable i(t) calculations based on microscopic t ransport  mod-  
els.(46) The advantage  of our  method  is that  the main  results can already be 
obtained f rom looking at the structure of D(~).  Therefore one can show (13) 
that  both energy-dependent  hopping in an exponential  band  tail as well as 



332 Movaghar et al. 

multiple trapping with an exponential trap depth distribution lead to 
dispersive transport with a dispersion parameter fl -- T / T  o, where ke T o is 
the width of the band tail. 

However, if one looks at the microscopic parameters it becomes 
difficult to explain the experimental data by pure hopping as shown by 
Godzik and Schirmacher. (14) 

We demonstrate this by considering the example of pure spatial 
hopping with a random distribution of sites (R-hopping). This case is also 
interesting since there have been controversal arguments as to whether such 
a model can lead to dispersive transport. (5'9'39-42'47'49) If otn - 1 / 3  is smaller 
than 1 we are in the QCA or diffusion equation limit, i.e., D does not 
depend on ~, which corresponds to Gaussian transport. In the limit 
c~n-l/3 >> l, on the other hand, D(o~) will behave as (ie) 1-r in the 
frequency range m0= ~0exp{- 1.73an -1/3} = t0 -1 < ~ < t, 0 with /3--- 
3o~-ln 1/3. This means that systems in which the overlap of the wave 
functions is finite but very small (a -3  << n - l )  are in principle capable of 
showing dispersive transport whereas systems with large overlap (ct -3 
~> n - l )  are not. For observing the anomalous dispersion in the small- 
overlap (or low-density) systems the experimental time scale including t r 
must lie in the interval po I < t < t 0. Since % is of the order of or larger 
than a phonon frequency (1012 Hz), t o will reach the/~s region for an-1/3 
= 8 and the ms region for otn - 1 / 3  = 12. 

Marshall (48) made a computer simulation of a spatial hopping system 
identical with the above model. Although he took values of an-1/3 up to 
10, his choice of parameters corresponded in all cases to the situation 
to<< t r ,  in which, according to condition (4.17) the dc current dominates 
the transport. This is exactly what he found and interpreted as evidence 
against possible dispersive transport in R-hopping systems. Which are now 
the parameters that lead to observable dispersive transport according to 
(4.17)? For R-hopping the parameter R in the prefactor of the diffusion 
coefficient is given by R = 1.05n -1/3, so that (4.17) together with (4.15) 
takes the form n << (~l/Z) 3/2 (note that a does not appear in this condition!) 
Marshall took n = 1, , / =  1/2, and L = 50 (and varied a) which yields 
(*l/L) = 0.01. Experimental values of vl/L in the Ohmic region are (38) 
10 -1~ (cm) -2 or smaller so that we must have n<<1015 cm -3 for the 
observation of dispersive transport. This condition will only be fulfilled for 
hopping between impurities but not for bulk systems. 

We conclude that the experimentally observed non-Gaussian currents 
in organic and anorganic amorphous semiconductors are probably always a 
result of multiple trapping. This confirms earlier conjectures (4~ based 
on qualitative arguments. 
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